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LElTER TO THE EDITOR 

The quantum group SU,(2) and a q-analogue of the 
boson operators 

L C Biedenharn 
Department of Physics, Duke University, Durham, NC 27706, USA 

Received 30 June 1989 

Abstract. A new realisation of the quantum group SU,(2) is constructed by means of a 
q-analogue to the Jordan-Schwinger mapping, determining thereby both the complete 
representation structure and q-analogues to the Wigner and Racah operators. To achieve 
this realisation, a new elementary object is defined, a q-analogue to the harmonic oscillator. 
The uncertainty relation for position and momentum in a q-harmonic oscillator is quite 
unusual. 

The quantum group SUq(2)-also denoted Uq(su(2))-was first introduced by 
Sklyanin, and independently by Kulish and Reshetikhin in their work [ l ]  on Yang- 
Baxter equations; these equations are well known to play a crucial role in classical 
and quantal integrable systems [2,3]. Quantum groups themselves were categorised 
abstractly by Drinfeld [4] in terms of Hopf algebras as the natural algebraic setting 
for the inverse scattering problem [ 5 ]  and for conformal field theory [6]. The purpose 
of the present paper is to develop a new realisation of the quantum group SUq(2), 
using a q-analogue of the Jordan-Schwinger mapping [7] which simplifies quite 
remarkably the algebraic manipulations of the theory. To achieve this realisation we 
shall construct a new elementary object, a q-analogue of the harmonic oscillator and, 
using this, a q-analogue of the boson operator calculus. This construction provides a 
model underlying-and thereby motivating-the q-analogue structure [ 81 itself; in turn 
this model leads to some surprising implications that we detail in the concluding 
discussion. 

Let us consider the quantum group, SU,(2), which is generated algebraically by 
the operators, J+, J- and J, obeying the Lie bracket (commutator) relations: 

EJz, J*I = *J* 

where q is a real number. 
Equations (1) and (2), for general q, no longer define a Lie algebra but an 

infinite-dimensional associative algebra Uq(su(2)), a deformation of the universal 
enveloping algebra of the Lie algebra su(2). In the limit q- ,  1, the generators of this 
algebra, su,(2), contract to the Lie algebra of SU(2). 
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The Jordan-Schwinger approach to SU(2) maps the 2 x 2 fundamental (spinor) 
realisation onto a pair of independent (commuting) boson operators: 

J + + a I d 2  J -  + a 2 a l  and J z + ~ ( a , a , - a 2 d 2 )  (3) 
where [di, a,] = 6, with all other brackets vanishing. 

What is the q-analogue to this construction? To answer this question, we must 
define a q-analogue to the harmonic oscillator. 

We propose this definition: consider the q-creation operator U,, its Hermitian 
conjugate the q-destruction operator a,, and the q-boson vacuum ketlO), defined by 
d,10), = 0. Instead of the Heisenberg (Lie) algebra, we postulate the algebraic relation 

(4) 4 4  a - q ' / 2  a,d, = q 

where N,  is the (Hermitian) number operator, defined to satisfy 

[N,, a41 = a, ( 5 )  

[N,, 6,]=-ci,. ( 6 )  

- N 4 2  

This algebra is a q-analogue generalisation of the Heisenberg algebra, which is itself 
now easily seen to be the contraction limit q+ 1. (Equation (4) was partly inspired 
by Manin's discussion [ 81 of non-commutative geometry.) 

To construct the state vectors we proceed in the standard way. The unnormalised 
ket vectors for states of n quanta are clearly of the form In), = (numerical norm) x aalO),, 
where a;  denotes the nth power of a,. 

To evaluate the norm we iterate equation (4) to find 
n - 1  

k / 2  k - N ' , / Z a n - k - l  
a,a; - q n / 2 a ; a ,  = q a,q 4 .  (7) 

k=O 

It follows that the n-quanta eigenstates {In),} are given by 

(8) 112 n In), = ( [nl ,  !)- . a,10), 
and are orthonormal. 

an integer) the explicit form: 
In equation (S), the q-factorial [n,]! has for the term [n], in the product (with n 

[ n l ,  = 4 ( n - 1 ) / 2 +  q ( n - 3 ) / 2 +  . . . + q - ( n - 1 ) / 2  

[nl,!=s - n ( n - 1 ) / 4 ~  q (  + I )  (9b) 

(9a) 
This q-factorial can be related to a q-analogue of Euler's factorial function [9]. More 
precisely (since q-analogues are not necessarily unique), we have the relation: 

with rq(x)  being the q-analogue of the gamma function [9] defined for general (and 
not just integer) arguments. (T,(x) + T(x) for q + 1; as usual, I-,( 1) = 1 = [O],!). 

The normalisation factorst for the eigenstates are invariant to the symmetry q + q-'. 
It is useful to note that the number operator N,  is not a,d,. 

It is now an easy matter to define the q-analogue to the Jordan-Schwinger map. 
To realise the Lie algebra of the generators of SU,(2), we define a pair of mutually 

commuting q-harmonic oscillator systems: alq and 6,, with i = 1,2. Then we have: 

J+ = ~ ~ q d z q  (10) 
J- = ( J + ) + =  aZqdl, (11) 

I There are, in fact, several possible q-analogues for the q-harmonic oscillator structure. The invariance of 
[n], in equation (8) under q + q-' makes the choice unique. This invariance stems from the related invariance 
of SUJ2). 
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and 

J, =f“ - N2,). (12) 
The eigenstates 1 j ,  m ) ,  are now q-analogues of the familiar quantal angular momen- 

tum states: 

(13) 1/2 j+m j - m  Ij, m ) , ~ ( [ j + m l q ! [ j - m l q ! ) -  alq a2, lo),. 

JAj ,  m>,=([ j~mI , [ j*m+11 , )”2[ j ,  m * O q  (14) 

J2k m) ,  = mlj, m)4 .  

One easily verifies that 

and that 

(15) 
The value of j is determined by the weight of the highest-weight state. 

(15) and after some algebraic manipulation, that 
To verify the defining commutation relations, (1) and (2), we see, using (14) and 

[J+ , 5-31 j ,  4, = ( [ j  + ml ,  [ j - m + 1 l 4  - [ j  - m l q [ j  + m + 1 I,)lj, m) ,  

CJ,, J*Il  j Jq  = *J+LW4. (17) 
This verifies the defining algebraic relations of suq(2). It is essential to note, however, 
that this q-analogue of the Jordan-Schwinger mapping verifies these defining relations 
only on ket vectors that terminate with the q-vacuum kef. Unlike the usual result, the 
commutation relations do not close abstractly?. 

The realisation for su,(2) defined by (10)-(12), and the set of eigenkets {Ij, m),} 
given in (13) define finite-dimensional unitary irreps of suq(2) for every j =  
0, f, 1, .  . . with m running by integer steps over the range j 2  m 2 -j. It is useful to 
note that for j = f ,  the su,(2) generators are exactly the Pauli matrices, JjJ=1/2’  =b.. 2 1  

It is easily seen that if we have two distinct (commuting) realisations of suq(2), 
say Ji(l) and Ji(2), then the sum: Ji =Ji ( l )+J i (2) ,  does not in general obey equation 
(2). Thus the usual technique of ‘adding angular momenta’ fails and a q-analogue to 
the Wigner-Clebsch-Gordan ( WCG) coefficients must be defined in a logically different 
way. As developed in [7] ,  an alternative characterisation, equivalent for su(2) but 
required for su,(2), defines WCG coefficients as matrix elements of unit tensor operators. 
The basic building block is the j = f tensor operator, from which all other q-wcc 
operators for SU,(2) may be constructed. 

Let us illustrate this concept by calculating the j = 1 q-wcG coefficients. The operator 
a lq  corresponds to a tensor operator which induces the changes: j + j + f  and m + m +f 
on a generic basis vector, so that the generic matrix element of alq  is an unnormalised 
q-wcG coefficient: 

(18a)  ( A j = i ,  Am =f) alq  + ([ j +  1 + m]q)1/2 .  
Similarly: 

t This situation is not new and occurs already in Dirac’s theory of constraints. See also [ 101. 
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where ( j ,  m )  refer to the initial state Ijm). These four matrix elements, suitably 
normalised, constitute the j = f q-WCG coefficients. 

It is clear from this example that the complete calculation of the general q - w m  
coefficient in SU,(2) is a direct q-boson transcription of the boson calculations given 
in [7]. 

The product of unit tensor operators is again a tensor operator, which can be split 
into unit tensor parts by the q-analogue WCG coefficients. This operator algebraic 
process [7] allows us to define the q-Racah coefficients as matrix elements of the 
invariant operator ( A  B x C )  where A, B, C and q-wcc operators and the two multipli- 
cations: ( .  = scalar) and ( X )  are defined by q - w m  coefficients (appropriately chosen 
to produce an overall invariant). 

So far we have simply shown an elegant and suggestive way to obtain certain known 
[ l l ,  121-as well as new-results in su,(2). The really interesting questions are those 
concerning the physics implied by the q-harmonic oscillator structure. To determine 
this we proceed by analogy. Let us dejine the q-momentum ( P , )  and q-position (0,) 
operators directly from the q-boson operators a, and 6, introduced in equations 
(4)-(6). That is, 

P, = i-( a, - 6,) 

and 

Q, = d G (  a, + 6,). (20) 

Using these operators, we define, again by analogy, the q-analogue harmonic oscillator 
Hamiltonian to be: X, (Pq)'/2m +&"(Q,)', so that 

E, =;fiw(6,aq+aq6,). (21) 

This q-Hamiltonian operator E, is diagonal on the eigenstates In), and has the 
eigenvalues: 

E, + E, ( n ) = f fiw ([ n + 13, + [ n]  , ). (22) 

We see immediately that the energy levels are no longer uniformly spaced (for q f 1). 
Consider next the uncertainty relation for the q-position and q-momentum, i.e. the 

commutator i[P,, Q,] = [a, a ] .  This operator is diagonal (on the eigenstates {In),} and 
has the eigenvalues: 

One sees that the uncertainty is minimal (and independent of n )  only in the limit 
q + 1; the uncertainty increases with n for q # 1. This shows that any attempt to 
measure position accurately in a q-harmonic oscillator will necessarily involve large 
energies and a corresponding characteristic increase in the intrinsic uncertainty of 
equation (20). 

Spontaneous and stimulated emission for q-boson fields originates in the q-boson 
factors: a, + ([ n + 1]q)1/2 for creation as opposed to 6, + ([n] , ) ' / '  for stimulated absorp- 
tion. The difference between these factors is also given by equation (23), which shows 
that the spontaneous emission probability of a q-harmonic oscillator increases for large 
occupation numbers ( n )  and is independent of n (and unity) only for q + 1, the standard 
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boson resultt. Let us note that it is possible to define coherent states {(a),} for 
q-harmonic oscillators, using the definition: 

fi,la), = aIa)q (24a) 
with 

where exp,(x) is the q-analogue of the exponential function. The energy distribution 
in such a q-coherent state is now a q-analogue Poisson distribution. 

The physical reality of these deviations from standard quantum mechanics, which 
originate in the basic characteristics of q-harmonic oscillators, can only be a matter 
of speculation at present, and certainly any such deviations can be expected to be 
extremely small at ordinary energies. At the Planck scale, however, energies are 
enormously large and the implied deviations could be significant (and possibly even 
helpful in field theory). The solvable lattice models of statistical mechanics and the 
field theoretic examples of quantum groups are intimately connected with such q- 
analogue structures and are certainly well founded physically; it is this known, and 
important, fact that provides the motivation for taking q-harmonic oscillators and their 
strange properties seriously. 

Let us remark that the q-boson methods discussed above have been shown to extend 
directly to all SU,(n) and, very probably, also to q-analogues of all the classical groups. 
This extension requires a new concept, a q-analogue to antisymmetrised multiboson 
operators (determinantal bosons), which we have shown explicitly validates the pattern 
calculus rules [ 131 (replacing factorials by [n],!) for these q-analogue operator struc- 
tures. This fundamental result in turn yields explicitly the complete representation 
structure for all suq(n) ,  and q-analogues for the WCG and Racah coefficients, to the 
extent that these structures are known to be canonically defined in SU(n) itself. A 
detailed discussion of these results is in preparation. 

Helpful discussions with Professors H van Dam and J Stasheff are acknowledged with 
thanks. This work was supported in part by the DOE and NSF. 

Note added in prooj After submission of this paper, a preprint entitled, ‘On +Analogues of the Quantum 
Harmonic Oscillator and the Quantum Groups SU(2)’ by A J Macfarlane was received. This preprint 
develops some, but not all, of the results given above. 
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